On Planar Mixed Hypergraphs
نویسندگان
چکیده
A mixed hypergraph H is a triple (V, C,D) where V is its vertex set and C and D are families of subsets of V , C–edges and D–edges. A mixed hypergraph is a bihypergraph iff C = D. A hypergraph is planar if its bipartite incidence graph is planar. A vertex coloring of H is proper if each C–edge contains two vertices with the same color and each D–edge contains two vertices with different colors. The set of all k’s for which there exists a proper coloring using exactly k colors is the feasible set of H; the feasible set is called gap-free if it is an interval. The minimum (maximum) number of the feasible set is called a lower (upper) chromatic number. We prove that the feasible set of any planar mixed hypergraph without edges of size two and with an edge of size at least four is gap-free. We further prove that a planar mixed hypergraph with at most two D–edges of size two is two-colorable. We describe a polynomial-time algorithm to decide whether the lower chromatic number of a planar mixed hypergraph equals two. We prove that it is NP-complete to find the upper chromatic number of a mixed hypergraph even for 3-uniform planar bihypergraphs. In order to prove the latter statement, we prove that it is NP-complete to determine whether a planar 3-regular bridgeless graph contains a 2-factor with at least a given number of components. ∗The author acknowledges partial support by GAČR 201/1999/0242 and GAUK 158/1999. †The author acknowledges partial support by GAČR 201/1999/0242, GAUK 158/1999 and KONTAKT 338/99. ‡Institute for Theoretical Computer Science is supported by Ministry of Education of Czech Republic as project LN00A056. the electronic journal of combinatorics 8 (2001), #R35 1
منابع مشابه
Colouring Planar Mixed Hypergraphs
A mixed hypergraph is a tripleH = (V, C,D) where V is the vertex set and C and D are families of subsets of V , the C-edges and D-edges, respectively. A k-colouring of H is a mapping c : V → [k] such that each C-edge has at least two vertices with a Common colour and each D-edge has at least two vertices of Different colours. H is called a planar mixed hypergraph if its bipartite representation...
متن کاملRepresentation of Planar Hypergraphs by Contacts of Triangles
Many representation theorems extend from planar graphs to planar hypergraphs. The authors proved in [10] that every planar graph has a representation by contact of triangles. We prove here that this representation result extend to planar linear hypergraphs. Although the graph proof was simple and led to a linear time drawing algorithm, the extension for hypergraphs needs more work. The proof we...
متن کاملDirected Hypergraph Planarity
Directed hypergraphs are generalizations of digraphs and can be used to model binary relations among subsets of a given set. Planarity of hypergraphs was studied by Johnson and Pollak; in this paper we extend the planarity concept to directed hypergraphs. It is known that the planarity of a digraph relies on the planarity of its underlying graph. However, for directed hypergraphs, this property...
متن کاملSelf-dual Planar Hypergraphs and Exact Bond Percolation Thresholds
A generalized star-triangle transformation and a concept of triangle-duality have been introduced recently in the physics literature to predict exact percolation threshold values of several lattices. We investigate the mathematical conditions for the solution of bond percolation models, and identify an infinite class of lattice graphs for which exact bond percolation thresholds may be rigorousl...
متن کاملChromatic polynomials of some mixed hypergraphs
Motivated by a recent result of Walter [Electron. J. Combin. 16 (2009), R94] concerning the chromatic polynomials of some hypergraphs, we present the chromatic polynomials of several (non-uniform) mixed hypergraphs. We use a recursive process for generating explicit formulae for linear mixed hypercacti and multi-bridge mixed hypergraphs using a decomposition of the underlying hypergraph into bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 8 شماره
صفحات -
تاریخ انتشار 2001